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Abstract

This paper proposes a new distributed nonconvex stochastic optimization algorithm that can achieve privacy protection and
event-triggered communication. Specifically, each node masks its local state to avoid information leakage, and then designs
an event-triggered mechanism to determine whether the current masked state is transmitted to its neighbor nodes. Two
masked cases are considered, one is the additive Gaussian noise, and another is the unbiased stochastic quantizer. For both
cases, differential privacy analysis is given rigorously, where (ε, δ)-differential privacy for the additive Gaussian noise while
(0, δ)-differential privacy for the unbiased stochastic quantizer. By using a sample-size parameter-controlled subsampling
method, both cases enhance the differential privacy level compared with the existing ones. By using a two-time-scale step-sizes
method, the convergence rate and the oracle complexity of the proposed algorithm are given when the global cost function
satisfies the Polyak- Lojasiewicz condition. We show the tradeoff between the privacy level, event-triggered communication
and the convergence rate of the algorithm. In addition, the proposed algorithm achieves both the mean square convergence
and enhanced differential privacy as the sample-size goes to infinity. A numerical example of the distributed training on the
“MNIST” dataset is given to show the effectiveness and advantage of the algorithm.
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1 Introduction

Distributed optimization is gaining more and more at-
traction due to its wide applications in multi-robot sys-
tem, smart grids, and large-scale machine learning. In
these applications, the problem can be formulated as a
network of nodes cooperatively solve a common opti-
mization problem through on-node computation and lo-
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cal communication (Nedic & Ozdaglar, 2009; Reisizadeh
et al., 2019a,b; Xin et al., 2022; Zhang et al., 2023, 2024).
Among others, distributed stochastic optimization fo-
cuses on finding optimal solutions for stochastic cost
functions in a distributed manner. To solve this stochas-
tic optimization problem, a distributed stochastic gradi-
ent descent (SGD) algorithm is one of the popular meth-
ods, and has been widely studied, such as distributed
SGD with quantized communication (Reisizadeh et al.,
2019a,b), distributed SGD with gradient compression
(Zhang et al., 2023), and so on.

When nodes exchange information in the distributed
SGD algorithm, the involved sensitive data may be
leaked. Therefore, a fundamental challenge in such an
optimization algorithm is to protect the privacy of the
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involved sensitive data (Zhang et al., 2021; Miao et al.,
2024). To solve this issue, various techniques have been
employed, such as homomorphic encryption (Lu & Zhu,
2018), state decomposition (Wang, 2019), differential
privacy (Dwork & Roth, 2014; Le Ny & Pappas, 2014;
Liu et al., 2020b; Wang et al., 2022; Chen et al., 2023;
Wang et al., 2024), and so on. Due to its simplicity and
wide applicability in privacy protection, differential pri-
vacy has attracted a lot of attention and been used to
solve privacy issues in distributed stochastic optimiza-
tion. Up to now, there are two main kinds of differential
privacy, one is the (ε, δ)-differential privacy masked by
the additive Gaussian (Laplacian) noise, and another is
the (0, δ)-differential privacy masked by the unbiased
stochastic quantizer. By adding the additive Gaus-
sian (Laplacian) noise, differentially private distributed
stochastic optimization algorithms are proposed in
(Zhang et al., 2018; Li et al., 2018; Huang et al., 2019;
Ding et al., 2021; Gratton et al., 2021; Xu et al., 2022;
Yan et al., 2023; Wang & Başar, 2023a; Liu et al., 2024).
Among them, distributed convex stochastic optimiza-
tion algorithms were considered in (Zhang et al., 2018;
Li et al., 2018; Huang et al., 2019; Ding et al., 2021;
Gratton et al., 2021; Liu et al., 2024), while distributed
nonconvex stochastic optimizations were provided in
(Xu et al., 2022; Wang & Başar, 2023a; Yan et al., 2023).
However, (ε, δ)-differential privacy is only given for each
iteration in Zhang et al. (2018); Li et al. (2018); Huang
et al. (2019); Ding et al. (2021); Gratton et al. (2021);
Xu et al. (2022); Wang & Başar (2023a); Yan et al.
(2023); Liu et al. (2024), leading to infinite cumulative
differential privacy budgets over infinite iterations. For
the unbiased stochastic quantizer case, Wang & Başar
(2023b); Liu et al. (2025) treat the dither signals in
the quantizers as privacy noises, and prove that using
the dithered lattice quantizer (i.e., ternary quantizer
in Wang & Başar (2023b) and stochastic quantizer in
Liu et al. (2025)) can achieve (0, δ)-differential privacy.
Since (0, δ)-differential privacy is only given for each it-
eration in Wang & Başar (2023b); Liu et al. (2025), (0,
1)-differential privacy is achieved over infinite iterations.
In this case, the sensitive information therein cannot be
protected over infinite iterations since (0,1)-differential
privacy means the algorithm directly outputs the sensi-
tive information. Recently, the differentially private dis-
tributed stochastic nonconvex optimization with quan-
tized communication was studied in Chen et al. (2024).
Although (ε, δ)-differential privacy has been improved,
(0, δ)-differential privacy is not considered therein.

Besides privacy preservation, another fundamental chal-
lenge in the distributed SGD algorithm is the expensive-
ness of communications. To solve this issue, an event-
triggered communication is a well-known method (Es-
pitia et al., 2021; Wang & Krstic, 2023). There have
been some interesting works on communication-efficient
distributed optimization by an event-triggered commu-
nication, such as distributed optimization for second-
order continuous-time multi-agent systems (Yi et al.,

2018), distributed non-convex optimization (George &
Gurram, 2020; Xu et al., 2024), distributed convex con-
strained optimization (Liu et al., 2020a), distributed
online convex optimization (Cao & Başar, 2021), dis-
tributed optimization with asynchronous computation
(Dong et al., 2025), large-scale machine learning under
compressed communication (Singh et al., 2023), and dis-
tributed federated learning with decaying communica-
tion rate (He et al., 2023). However, none of the above-
mentioned literature takes privacy issues into account.
Recently, both the event-triggered communication and
the differential privacy are considered for average con-
sensus (Wang et al., 2019; Gao et al., 2019; Liang et al.,
2024), and distributed optimization (Mao et al., 2023;
Yuan et al., 2024), respectively. As far as we known, the
event-triggered communication and privacy preservation
are seldom studied together in distributed stochastic op-
timization though it is of great interest.

In this paper, we are interested in designing a privacy
preserving and communication-efficient algorithm for
distributed stochastic optimization by using event-
triggered communication. The main contributions of
this paper are as follows:

• A new differentially private distributed noncon-
vex stochastic optimization algorithm with event-
triggered communication has been proposed. In the
proposed algorithm, each node masks its local state
to avoid information leakage, and then designs an
event-triggered mechanism to determine whether the
current masked state is transmitted to its neighbor
nodes. Two masked cases are considered, one is the
additive Gaussian noise, and another is the unbiased
stochastic quantizer.

• For both masked cases, by using a sample-size
parameter-controlled subsampling method, the dif-
ferential privacy level is enhanced. For the additive
Gaussian noise case, (ε, δ)-differential privacy is en-
hanced compared with (Zhang et al., 2018; Li et al.,
2018; Huang et al., 2019; Ding et al., 2021; Gratton
et al., 2021; Xu et al., 2022; Wang & Başar, 2023a;
Yan et al., 2023; Liu et al., 2024). For the unbiased
stochastic quantization case, (0, δ)-differential pri-
vacy is enhanced compared with (Wang & Başar,
2023b; Liu et al., 2025) while saving the transmitted
rounds and bits of communication simultaneously.

• Under the Polyak- Lojasiewicz condition, the conver-
gence rate of the algorithm is given for general privacy
noises, including increasing, constant and decreasing
privacy noises. This is non-trivial even without con-
sidering the privacy protection. By using a two-time-
scale step-sizes method, the assumption of bounded
gradients required in (Zhang et al., 2018; Li et al.,
2018; Huang et al., 2019; Ding et al., 2021; Gratton et
al., 2021; Wang & Başar, 2023a; Liu et al., 2024) has
been removed.

This paper is organized as follows: Section 2 formulates
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the problem to be investigated. Section 3 presents the
main results including the privacy, convergence rate and
oracle complexity analysis of the algorithm. Section 4
provides a numerical example of the distributed train-
ing of a convolutional neural network on the “MNIST”
dataset. Section 5 gives some concluding remarks.

Notation: R and Rr denote the set of all real num-
bers and r-dimensional Euclidean space, respectively.
Range(F ) denotes the range of a mapping F . For se-
quences {ak}∞k=1 and {bk}∞k=1, ak = O(bk) means there
exists C ≥ 0 such that lim supk→∞ |akbk | ≤ C. 1n rep-
resents an n-dimensional vector whose elements are all
1. A> stands for the transpose of the matrix A. ‖x‖ =√
x>x denotes the standard Euclidean norm of x =

[x1, x2, . . . , xm]>, and ‖A‖ denotes the 2-norm of the
matrix A. E(X) refers to the expectation of a random
variable X. ⊗ denotes the Kronecker product of matri-
ces. For a differentiable function f(x),∇f(x) denotes its
gradient at the point x.

2 Preliminaries and Problem formulation

2.1 Graph theory

Consider a network of n nodes which exchange infor-
mation on an undirected and connected communication
graph G = (V, E). V = {1, 2, . . . , n} is the set of all
nodes, and E is the set of all edges. An edge eij ∈ E if and
only if Node i can receive the information from Node j.
Different nodes in V exchange information based on the
weight matrix A = (aij)1≤i,j≤n, whose entry aij is ei-

ther positive if eij ∈ E , or 0, otherwise. The neighbor set
of Node i is defined as Ni = {j ∈ V : aij > 0}, and the
Laplacian matrix of A is defined as L = diag(A1n)−A.
The assumption about the weight matrix A is given as
follows:

Assumption 1 The weight matrix A is doubly stochas-
tic, i.e., A1n = 1n, 1>nA = 1>n .

2.2 Distributed stochastic optimization

In this paper, the following distributed nonconvex
stochastic optimization problem is considered:

min
x∈Rr

F (x)= min
x∈Rr

1

n

n∑
i=1

fi(x), fi(x)=Eξi∼Di [`i(x, ξi)], (1)

where x is available to all nodes, `i(x, ξi) is a local cost
function which is private to Node i, and ξi is a random
variable drawn from an unknown probability distribu-
tion Di. In practice, since the probability distribution
Di is difficult to obtain, it is replaced by the dataset

Di = {ξi,l, 1 ≤ l ≤ D}. Then, (1) can be rewritten as
the following empirical risk minimization problem:

min
x∈Rr

F (x)= min
x∈Rr

1

n

n∑
i=1

fi(x), fi(x)=
1

D

D∑
l=1

`i(x, ξi,l).

(2)

To solve the empirical risk minimization problem (2), we
need the following standard assumption.

Assumption 2 (i) For any node i ∈ V, fi has Lipschitz
continuous gradients, i.e., ‖∇fi(x) −∇fi(y)‖ ≤ L‖x −
y‖, ∀x, y ∈ Rr, where L is a positive constant.

(ii) Each cost function is bounded from below, i.e.,
minx∈Rr fi(x) = f∗i > −∞.

(iii) For any node i ∈ V, x ∈ Rr and ζi uniformly sam-
pled from Di, there exists a stochastic first-order ora-
cle which returns a sampled gradient ∇`i(x, ζi) of fi(x).
In addition, there exists σ` > 0 such that each sam-
pled gradient ∇`i(x, ζi) satisfies E[∇`i(x, ζi)] = ∇fi(x),
E[‖∇`i(x, ζi)−∇fi(x)‖2] ≤ σ2

` .

Remark 1 Assumption 2(i) is commonly used (see e.g.
(Zhang et al., 2018; Reisizadeh et al., 2019a; Ding et
al., 2021; Xin et al., 2022; Xu et al., 2022; Yan et al.,
2023; Wang & Başar, 2023a)). Assumption 2(ii) ensures
the existence of the optimal solution. Assumption 2(iii)
requires that each sampled gradient∇`i(x, ζi) is unbiased
with a bounded variance σ2

` (see e.g. (Ding et al., 2021;
Xu et al., 2022; Wang & Başar, 2023a; Yan et al., 2023)).

Distributed SGD for solving the problem (2) was first
studied and rigorously analyzed by Nedic & Ozdaglar
(2009). In this algorithm, each node i iteratively updates
its decision variables xi,k+1 by combining an average of
the states of its neighbors with a gradient step as fol-
lows: xi,k+1 =

∑
j∈Ni aijxj,k − αk∇`i(xi,k, ζi,k), where

αk is the time-varying step size corresponding to the in-
fluence of the gradients on the state update rule at each
time step. When using this distributed SGD algorithm
to solve the distributed stochastic optimization problem,
there are two key issues worthy of attention. One is the
leakage of the sensitive information concerning the sam-
pled gradient, and the other is the expensive communi-
cations. To solve the first issue, the differential privacy
method masked by the additive Gaussian (Laplacian)
noise and the unbiased stochastic quantizer is used. To
solve the second issue, an event-triggered communica-
tion mechanism is introduced. Next, we first introduce
the differential privacy method.

2.3 Differential privacy

In this paper, we consider the following adversary widely
used in the privacy issue for distributed stochastic opti-
mization (Wang & Başar, 2023a,b; Liu et al., 2024):
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• A semi-honest adversary. This kind of adversary is de-
fined as a node within the network which has access
to certain internal states (such as xi,k from Node i),
follows the prescribed protocols and accurately com-
putes iterative state correctly. However, it aims to in-
fer the sensitive information of other nodes.
• An external adversary (which also refer to an eaves-

dropper) who has capability to wiretap and monitor
all communication channels, allowing them to capture
distributed messages from any node. This enables the
eavesdropper to infer the sensitive information of in-
ternal nodes.

When solving the empirical risk minimization problem
(2), the stochastic first-order oracle needs data samples
to return sampled gradients. Meanwhile, the adversaries
mentioned above can infer the sensitive information of
data samples from sampled gradients (Zhu et al., 2019).
In order to provide privacy protection for data samples,
inspired by Wang et al. (2022); Liu et al. (2024), a sym-
metric binary relation called adjacency relation is de-
fined as follows:

Definition 1 (Adjacency relation) Let D = {ξi,l, i ∈
V, 1 ≤ l ≤ D}, D′ = {ξ′i,l, i ∈ V, 1 ≤ l ≤ D} be two sets
of data samples. If for any given C > 0 and any x ∈ Rr,
there exists exactly one pair of data samples ξi0,l0 , ξ

′
i0,l0

in D,D′ such that{
‖∇`i(x, ξi,l)−∇`i(x, ξ′i,l)‖ ≤ C, if i = i0 and l = l0;

‖∇`i(x, ξi,l)−∇`i(x, ξ′i,l)‖ = 0, if i 6= i0 or l 6= l0,

(3)

then D and D′ are said to be adjacent, denoted by
Adj(D,D′).

Remark 2 The boundary C characterizes the “close-
ness” of a pair of data samples ξi0,l0 , ξ′i0,l0 . By (3), the
larger the boundary C is, the larger the allowed magni-
tude of sampled gradients between adjacent datasets is.

To give the privacy protection level of the algorithm,
we adopt the definition of (ε, δ)-differential privacy as
follows:

Definition 2 (Le Ny & Pappas, 2014) ((ε, δ)-differential
privacy) Given ε ≥ 0, 0 < δ ≤ 1, a randomized algorithm
M achieves (ε, δ)-differential privacy for Adj(D,D′) if
P(M(D) ∈ T ) ≤ eεP(M(D′) ∈ T ) + δ for any Borel-
measurable set T ⊆ Range(M).

2.4 Event-triggered communication

We assume that each node can continuously monitor
its own masked state and decide when to transmit its
current masked state over the network based on an
event-triggered mechanism. Let Φ be the event-triggered

threshold for any k ≥ 0, τi,0 , 0 be the first event trig-

gering instant, and ei,0 , C(xi,0) be the masked state
error at the zero-th iteration for any node i ∈ V. Then,
for any given K ≥ 1 and k = 1, 2, . . . ,K, we define
ei,k , C(xi,k)−C(xi,τi,k) as the masked state error, and
τi,k as the latest event triggering instant no more than
k as follows:

τi,k ,

{
τi,k−1, if ‖ei,k−1‖ < Φ,

k, if ‖ei,k−1‖ ≥ Φ.
(4)

We give the following example to further clarify the
event-triggered mechanism. As shown in Fig. 1, Node 1’s
masked state error at the zero-th and third iteration is
larger than the event-triggered threshold, and thus 0, 1,
4 are event triggering instants. In this case, τ1,k is given
for k = 0, 1, 2, 3, 4 by (4).

Fig. 1. An example of the event-triggered mechanism

Remark 3 The event-triggered mechanism (4) is to
determine whether the masked state is worth shar-
ing with its neighbors by comparing it with the last
sent-out masked state. To ensure the convergence, the
event-triggered threshold Φ should decay fast enough, as
required in Assumption 3. However, to avoid nodes com-
municating frequently all the time, Φ should not decay
too fast.

2.5 Oracle complexity

Since the sample-size parameter-controlled subsampling
method is employed in this paper, the total number of
data samples to obtain an optimal solution is an issue
worthy of attention. To show this, we give the defini-
tions of η-optimal solutions and the oracle complexity
as follows:

Definition 3 (Chen et al., 2024) (η-optimal solution)
Given η > 0 and the global minimum F ∗ = minx∈RrF (x)
of the problem (2), xK = [x>1,K , . . . , x

>
n,K ]> is an η-

optimal solution if E|F (xi,K) − F ∗| < η, ∀i ∈ V, where
F (xi,K) is the estimate of the global minimum F ∗ at the
K-th iteration.

Definition 4 (Chen et al., 2024) Given η > 0, the or-

acle complexity
∑N(η)
k=0 sk is the total number of data

samples to obtain an η-optimal solution, where N(η) =
min{K : xK is an η-optimal solution}, sk is the sample-
size at the k-th iteration.
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3 Main result

3.1 The proposed algorithm

In this subsection, we give a distributed SGD algorithm
with differential privacy and event-triggered communi-
cation. The detailed implementation steps are given in
Algorithm 1.

Algorithm 1 A distributed SGD algorithm with differ-
ential privacy and event-triggered communication

Initialization: xi,0 ∈ Rr, ∀i ∈ V, weight matrix
(aij)1≤i,j≤n, iteration maximum K, step-sizes α =
a1
Kp1

, β = a2
Kp2

, the sample-size s = ba3Kp3c+1, and
the event-triggered threshold Φ = a4

Kp4
.

for k = 0, 1, 2, . . . ,K, do
1: If k = 0, then

Node i sets τi,0 = 0, and masks xi,0 as C(xi,0). Then,
Node i sends C(xi,0) to its neighbor j ∈ Ni, and
receives C(xj,0) from its neighbor j ∈ Ni.
else

If ‖ei,k‖ ≥ Φ, then
Node i masks xi,k as C(xi,k), and then sends
C(xi,k) to its neighbor j∈Ni. Node i sets
C(xi,τi,k) = C(xi,k).
else
Node i sets C(xi,τi,k) = C(xi,τi,k−1

).
end if

end if
2: Node i takes s different data samples ζi,k,1, . . . , ζi,k,s

uniformly from Di to generate sampled gradients
∇`i(xi,k, ζi,k,1), . . . ,∇`i(xi,k, ζi,k,s). Then, Node i
puts these data samples back into Di.

3: Node i computes the averaged sampled gradient by

∇`i,k =
1

s

s∑
l=1

∇`i(xi,k, ζi,k,l). (5)

4: Node i updates its state by

xi,k+1 = (1− β)xi,k + β
∑
j∈Ni

aijC(xj,τj,k)− α∇`i,k.

(6)

end for

3.2 Privacy analysis

In this subsection, we will show the differential privacy
analysis of Algorithm 1. Inspired by Wang et al. (2022),
we first provide the sensitivity of the algorithm, which
helps us to analyze the differential privacy of the algo-
rithm.

Definition 5 (Sensitivity) Given Adj(D,D′), and a
mapping q. For any k = 0, · · · ,K, let Dk = {ζi,k,l, i ∈

V, 1 ≤ l ≤ s}, D′k = {ζ ′i,k,l, i ∈ V, 1 ≤ l ≤ s} be the data

samples taken from D,D′ at the k-th iteration, respec-
tively. Define the sensitivity of Algorithm 1 at the k-th
iteration as follows:

∆q
k , sup

Adj(D,D′)
‖q(Dk)− q(D′k)‖. (7)

Remark 4 Definition 5 captures the magnitude by
which one node’s data sample can change the map-
ping q in the worst case. It is the key quantity to
achieve the (ε, δ)-differential privacy at the k-th iter-
ation. In Algorithm 1, the mapping q(Dk) = xk+1 =
[x>1,k+1, . . . , x

>
n,k+1]>.

The following lemma gives the sensitivity ∆q
k of Algo-

rithm 1 for any k = 0, . . . ,K.

Lemma 1 At the k-th iteration, the sensitivity of Algo-

rithm 1 satisfies ∆q
k ≤

αC
s

(∑k
m=0 |1− β|m

)
.

Proof: Since the differential privacy is well-defined for
the worse case where the event triggering instant hap-
pens at each iteration k = 0, . . . ,K, the whole observa-
tions (C(x0), C(x1), . . . , C(xK)) is considered. Then, the
left proof is similar to that of Lemma 1 in Chen et al.
(2024), and thus, is omitted here. 2

Next, we consider the following two masked cases. The
first one is the additive Gaussian noise, i.e., C(xi,k) =
xi,k + di,k with di,k ∼ N(0, σ2Ir). The second one is
the unbiased stochastic quantizer, the unbiased stochas-
tic quantizes a vector xi,k = [xi1,k, . . . , xir,k]> ∈ Rr
as C(xi,k) = [C(xi1,k), . . . , C(xir,k)]> to the range by a
scale factor σ ∈ N+. For any lcσ < xiι,k ≤ (lc + 1)σ,
ι = 1, . . . , r, lc ∈ Z, the quantizer outputs

C(xiι,k) =

{
lcσ, with probability1 + lc − xiι,k/σ;

(lc + 1)σ, with probability xiι,k/σ − lc.
(8)

We first give the privacy analysis for the additive Gaus-
sian noise case.

Theorem 1 For any given K ≥ 1, k = 0, · · · ,K, let

α =
a1
Kp1

, β =
a2
Kp2

, s = ba3Kp3c+ 1,

σ = Kp4 , δk =
1

(k + 2)ν
, a1, a2, a3 > 0.

If 0 < a2 < Kp2 and ν > 0, then Algorithm 1 achieves
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(ε, δ)-differential privacy over finite iterations K, where

ε =

K∑
k=0

εk ≤
K∑
k=0

2Ca1
√

ln(1.25(k+1)ν)

a2a3Kp1−p2+p3+p4
,

δ =

K∑
k=0

1

(k + 2)ν
. (9)

Furthermore, if p1 − p2 + p3 + p4 > 1, ν ≥ 2, then Al-
gorithm 1 achieves finite cumulative differential privacy
budgets ε, δ over infinite iterations.

Proof. The proof is the same as that of Theorem 1 in
Chen et al. (2024), and thus, is omitted here. 2

Now we give the privacy analysis for the unbiased
stochastic quantizer case.

Theorem 2 For any given K ≥ 1, k = 0, · · · ,K, let

α =
a1
Kp1

, β =
a2
Kp2

, s = ba3Kp3c+ 1,

σ = Kp4 , a1, a2, a3 > 0.

If 0 < a2 < Kp2 , then Algorithm 1 achieves (0, δ)-
differential privacy over finite iterations K, where

δ ≤ min{1, Ca1(K + 1)

a2a3Kp1−p2+p3+p4
}. (10)

Furthermore, if p1−p2+p3+p4 > 1, then the cumulative
differential privacy budget δ of Algorithm 1 goes to 0 over
infinite iterations.

Proof. Without loss of generality, we proceed with the
following two cases.

Case 1: If xiι,k ∈ ((lc − 1)σ, lcσ] and x′iι,k ∈ (lcσ, (lc +

1)σ], then

δk =|P[C(xiι,k) = lcσ|xiι,k]− P[C(x′iι,k) = lcσ|x′iι,k]|
=|xiι,k/σ − (lc − 1)− (1 + lc − x′iι,k/σ)|
=|(xiι,k + x′iι,k)/σ − 2lc|
≤|x′iι,k − lcσ|/σ + |lcσ − xiι,k|/σ

=
|xiι,k − x′iι,k|

σ
.

Similarly, one can obtain the same relationship when
xiι,k ∈ (lcσ, (lc + 1)σ] and x′iι,k ∈ ((lc − 1)σ, lcσ].

Case 2: If xiι,k, x
′
iι,k ∈ ((lc − 1)σ, lcσ], then

δk =|P[C(xiι,k) = lcσ|xiι,k]− P[C(x′iι,k) = lcσ|x′iι,k]|
=|1 + lc − xiι,k/σ − (1 + lc − x′iι,k/σ)|

=
|xiι,k − x′iι,k|

σ

Similarly, one can obtain the same relationship when
xiι,k, x

′
iι,k ∈ (lcσ, (lc + 1)σ]. Hence, we have

δk ≤
αC
s

(∑k
m=0 |1− β|m

)
σ

≤ Ca1
a2a3Kp1−p2+p3+p4

.

Note that δ ≤ 1. Then, the theorem is proved. 2

Remark 5 In the unbiased stochastic quantizer case,
the unbiased stochastic quantizer plays two roles, one is
saving the bits of communication, another is achieving
the privacy preserving. While Singh et al. (2023) consid-
ers both event-triggered and quantized communication in
distributed optimization, it does not consider the privacy
protection. Further, by properly designing the scaling fac-
tors σ and the sample size s, we solve the issue of privacy
protection failure caused by δk increasing to 1 in Wang
& Başar (2023b); Liu et al. (2025). Therefore, compared
with Singh et al. (2023); Wang & Başar (2023b); Liu et
al. (2025), Algorithm 1 achieves a smaller δ over infinite
iterations while saving the transmitted rounds and bits of
communication simultaneously.

Remark 6 Theorems 1-2 also shows how step-size pa-
rameters p1, p2, the sample-size parameter p3 and the
masked parameter p4 affect cumulative differential pri-
vacy budgets. As shown in (9), the larger the step-size pa-
rameter p1, the sample-size parameter p3 and the masked
parameter p4 are, the smaller cumulative differential pri-
vacy budgets are. In addition, the smaller the step-size
parameter p2 is, the smaller cumulative differential pri-
vacy budgets are.

Remark 7 The sample-size s is not required to go to
infinity to achieve differential privacy over infinite iter-
ations for both masked cases. Specifically, let the sample-
size parameter p3 = 0. Then, the sample-size s is con-
stant. For the additive Gaussian noise case, if p1 − p2 +
p4 > 1, ν ≥ 2, then Algorithm 1 can achieve finite cumu-
lative differential privacy budgets over infinite iterations.
This shows advantage over Zhang et al. (2018); Li et al.
(2018); Huang et al. (2019); Ding et al. (2021); Gratton
et al. (2021); Xu et al. (2022); Wang & Başar (2023a);
Yan et al. (2023); Liu et al. (2024), since cumulative dif-
ferential privacy budgets go to infinity therein. For the
unbiased stochastic quantizer case, if p1 − p2 + p4 > 1,
then the cumulative differential privacy budget δ of Al-
gorithm 1 goes to 0 over infinite iterations. This shows
advantage over Wang & Başar (2023b); Liu et al. (2025),
since (0, 1)-differential privacy is achieved over infinite
iterations.

3.3 Convergence analysis

In this subsection, we will give the convergence rate
analysis of Algorithm 1. As shown in Reisizadeh et al.
(2019b), by (8), one obtains E[C(xi,k) − xi,k|xi,k] = 0,
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and E[|C(xi.k)−xi,k|2|xi,k] ≤ σ2. Thus, for both masked
cases, we treat C(xi,k) − xi,k as a stochastic noise di,k
for convergence analysis. Define σ algebras F0=σ({∅})
and Fk=σ({dl, wl : l = 0, . . . , , k − 1}), ∀k = 1, . . . ,K.
Then, C(xi,k) = xi,k + di,k with E[di,k|Fk] = 0 and
E[‖di,k‖2|Fk] ≤ σ2. Let

xk = [x>1,k, . . . , x
>
n,k]>, ek = [e>1,k, . . . , e

>
n,k]>,

dk = [d>1,k, . . . , d
>
n,k]>, ∇`k = [∇`>1,k, . . . ,∇`>n,k]>,

∇f(xk) , [∇f1(x1,k)
>
,∇f2(x2,k)

>
, . . . ,∇fn(xn,k)

>
]>,

wk , ∇`k −∇f(xk).

Then, by C(xτk) = xk + dk − ek, we express (6) in a
compact form as follows:

xk+1 =((In − βL)⊗ Ir)xk − α∇f(xk)

+ β(A⊗ Ir)(dk − ek)− αwk. (11)

First, we introduce an assumption on step-sizes, the
sample-size, the privacy noise, and the event-triggered
threshold.

Assumption 3 For any given K ≥ 1, step-sizes α =
a1
Kp1

, β = a2
Kp2

, the sample-size s = ba3Kp3c+1, the pri-
vacy noise parameter σ = Kp4 , and the event-triggered
threshold Φ = a4

Kp5
satisfy a1, a2, a3, a4 > 0, p2+p5 > p1,

1
2 < p2 < p1 < 1, 2p2 − 2p4 > p1.

Assumption 4 (Polyak- Lojasiewicz) The global cost
function F (x) satisfies the Polyak- Lojasiewicz condi-
tion, i.e., there exists µ > 0 such that 2µ(F (x)− F ∗) ≤
‖∇F (x)‖2, ∀x ∈ Rr.

Remark 8 Assumption 4 is commonly used (e.g. (Xin
et al., 2022)), and means that the gradient ∇F (x) grows
faster than a quadratic function as the algorithm moves
away from the optimal solution. Such functions exist, for
example, F (x) = x2 + 3 sin2 x is a nonconvex function
satisfying Assumption 4 for any µ ∈ (0, 0.3). As shown
in Theorem 2 of Karimi et al. (2016), Assumption 4 is
more general than the convex cost functions assumed in
Zhang et al. (2018); Li et al. (2018); Huang et al. (2019);
Reisizadeh et al. (2019a); Ding et al. (2021); Gratton et
al. (2021); Liu et al. (2024).

Theorem 3 If Assumptions 1-4 hold, then for any
given K ≥ 1 and ψ ∈ [1, 2], we have E‖∇F (xi,K+1)‖ψ =

O(K−
ψ
2 min{p1−p2,p2+p5−p1,2p2−2p4−p1}), ∀i ∈ V. Fur-

thermore, when ψ = 2,

E(F (xi,K+1)− F ∗)
=O(K−min{p1−p2,p2+p5−p1,2p2−2p4−p1}),∀i∈V, (12)

and the mean square convergence is achieved as K goes
to infinity, i.e., limK→∞ E‖∇F (xi,K+1)‖2 = 0,∀i ∈ V.

Proof. See Appendix A. 2

Remark 9 When the event-triggered mechanism (4) is
employed, the introduced error ek brings difficulty to the
convergence rate analysis of Algorithm 1. To combat this
effect, the step-size β is introduced. Moreover, from (12)
it follows that the smaller the event-triggered threshold
parameter p5 is, the slower the convergence rate is. There-
fore, the introduced event-triggered mechanism does slow
down the convergence rate of Algorithm 1.

Remark 10 The convergence rate of Algorithm 1 is
given for general privacy noises, including increasing,
constant and decreasing privacy noises. This is non-
trivial even without considering the privacy protection.

Remark 11 If the global cost function F (x) is λ-
strongly convex, i.e., there exists λ > 0 such that
F (y) ≥ F (x) + 〈∇F (x), y − x〉 + λ

2 ‖y − x‖2, ∀x, y ∈
Rr, then by Lemma 6.9 in Bubeck (2015) we have
2λ(F (x) − F ∗) ≤ ‖∇F (x)‖2, which means the global
cost function F (x) satisfies Assumption 4. In this case,
Algorithm 1 achieves the same convergence rate as Theo-
rem 3. Thus, Theorem 3 also holds for λ-strongly convex
cost function.

Remark 12 Note that distributed nonconvex stochastic
optimization algorithms may converge to a saddle point
instead of the desired global minimum. Then, the dis-
cussion of the avoidance of saddle points is necessary.
Assumption 4 implies that each stationary point x∗ of
F satisfying ∇F ∗ = 0 is a global minimum of F , and
thus guarantees the avoidance of saddle points discussed
in Wang & Başar (2023a). Furthermore, compared with
Zhang et al. (2018); Li et al. (2018); Huang et al. (2019);
Ding et al. (2021); Gratton et al. (2021); Wang & Başar
(2023a); Liu et al. (2024), Assumption 4 helps us to give
the convergence rate of Algorithm 1 without the assump-
tion of bounded gradients.

Based on Theorems 1-3, the mean square convergence
of Algorithm 1 as well as the differential privacy over
infinite iterations can be established, which is given in
the following corollary:

Corollary 1 For any given K ≥ 1, k = 0, · · · ,K, let

α =
a1
Kp1

, β =
a2
Kp2

, s = ba3Kp3c+ 1, σ = Kp4 ,

Φ =
a4
Kp5

, δk =
1

(k + 2)ν
, a1, a2, a3, a4 > 0.

Then, under Assumptions 1-2, and 4, we have the fol-
lowing conclusions for the two masked methods.

• For the additive Gaussian noise case, if ν ≥ 2, p2 +
p5 > p1, 1

2 < p2 < p1 < 1, 2p2 − 2p4 > p1, p1 − p2 +
p3+p4 > 1, then Algorithm 1 achieves the mean square
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convergence and finite cumulative differential privacy
budgets ε, δ over infinite iterations simultaneously as
the sample-size s goes to infinity.

• For the unbiased stochastic quantizer case, if p2+p5 >
p1, 1

2 < p2 < p1 < 1, 2p2−2p4 > p1, p1−p2+p3+p4 >
1, then Algorithm 1 achieves the mean square conver-
gence and the cumulative differential privacy budget
δ going to 0 over infinite iterations simultaneously as
the sample-size s goes to infinity.

Proof. By Theorems 1-3, this corollary is proved. 2

Remark 13 The result of Corollary 1 does not contra-
dict the trade-off between privacy and utility. In fact, to
achieve differential privacy, Algorithm 1 incurs a com-
promise on the utility. However, different from Gratton
et al. (2021); Yan et al. (2023) which compromise conver-
gence accuracy to enable differential privacy, Algorithm 1
compromises the convergence rate and the sample-size
(which are also utility metrics) instead. From Corol-
lary 1, it follows that the larger the privacy noise param-
eter p4 is, the slower the mean square convergence rate
is. Besides, the sample-size s is required to go to infin-
ity when the mean square convergence of Algorithm 1
and finite cumulative privacy budgets over infinite iter-
ations are considered simultaneously. The ability to re-
tain convergence accuracy makes our approach suitable
for accuracy-critical scenarios.

Based on Theorem 3, Definitions 3 and 4, the oracle
complexity of Algorithm 1 for obtaining an η-optimal
solution is given as follows:

Theorem 4 Given η ∈ (0, 12 ), let p1 = 1−η, p2 = 2−2η
3 ,

p3 = η, p4 = 0, p5 = 1. Then, under Assumptions 1-2

and 4, the oracle complexity of Algorithm 1 isO(η−
3+3η
1−η ).

Proof. For given η > 0, let the iteration maximum in
Algorithm 1 be N(η). Then, we have s = ba3N(η)ηc +
1 ≤ a3N(η)η + 1.

Note that by Theorem 3, there exists a constant C > 0
such that

E|F (xi,K+1)−F ∗|=E(F (xi,K+1)−F ∗)≤ C

K
1−η
3

. (13)

Then, when K ≥ b(Cη )
3

1−η c + 1 > (Cη )
3

1−η , (13) can be
rewritten as

E|F (xi,K+1)−F ∗|≤ C

K
1−η
3

<
C

(Cη )(
1−η
3 ) 3

1−η
=η. (14)

Thus, by (14) and Definition 3, xK+1 is an η-optimal
solution. Since N(η) is the smallest integer such that

xN(η) is an η-optimal solution, we have

N(η) ≤ 1 + min{K : K ≥ b(C
η

)
3

1−η c+ 1}

= b(C
η

)
3

1−η c+ 2. (15)

Hence, by Definition 4 and (15), we have

N(η)∑
k=0

s = (N(η) + 1)s ≤ (N(η) + 1)(a3N(η)η + 1)

= O
(
N(η)1+η

)
= O

(
η−

3+3η
1−η

)
.

Therefore, the theorem is proved. 2

Remark 14 From Theorems 3 and 4, the faster the con-
vergence rate is, the smaller the oracle complexity is. Fur-
ther, if η = 0.02, then the total number of data samples
to obtain an η-optimal solution is O(105), which does not
go to infinity. This requirement for the total number of
data samples is acceptable since the computational cost
of centralized SGD is O(105) to achieve the same accu-
racy as Algorithm 1.

4 Numerical Example

In this section, we train the convolution neural network
(CNN) model in the distributed manner on the bench-
mark dataset “MNIST” (LeCun et al., 1998). Specifi-
cally, five nodes cooperatively train the CNN model over
the undirected graph shown in Fig. 2, which satisfies As-
sumption 1. Then, the “MNIST” dataset is divided into
two subsets for training and testing, respectively. The
training dataset is uniformly divided into 5 subsets, each
of which can only be accessed by one node to update its
model parameters. The testing dataset can be accessed
by all nodes to evaluate the performance of their models.
In the following, we show the effect of the event-triggered
threshold parameter p5 on the convergence rate of Al-
gorithm 1, and the comparison of the convergence rate
between Algorithm 1 and methods in Li et al. (2018);
Huang et al. (2019); Gratton et al. (2021); Xu et al.
(2022); Wang & Başar (2023a); Liu et al. (2024), respec-
tively.

4.1 Effect of the event-triggered threshold parameter on
the convergence rate

Let step-sizesα = 80
2000 = 6·10−2, β = 0.7

20000.65 = 5·10−3,

the sample-size s = b3·10−4 ·20001.6c+1 = 58, the noise
parameter p4 = −1, and the event-triggered threshold
Φ = 130

2000p5 with the event-triggered threshold parame-
ter p5 = 0.5, 1, 2, respectively. Then, the training and
testing accuracy on the “MNIST” dataset are presented
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Fig. 2. Topology structure of the undirected graph

in Fig. 3, from which one can see that the larger the
event-triggered threshold parameter p5 is, the faster Al-
gorithm 1 converges.
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Fig. 3. Accuracy of Algorithm 1 with the event-triggered
threshold parameter p5 = 0.5, 1, 2

4.2 Comparison with existing methods

Let the event-triggered threshold parameter p5 = 0.5
in Algorithm 1. Then, the comparison of the conver-
gence rate between Algorithm 1 and methods in Li et al.

(2018); Huang et al. (2019); Gratton et al. (2021); Xu
et al. (2022); Wang & Başar (2023a); Liu et al. (2024) is
presented in Fig. 4. To ensure a fair comparison, we set
the same step-sizes and sample-size in Li et al. (2018);
Huang et al. (2019); Gratton et al. (2021); Xu et al.
(2022); Wang & Başar (2023a); Liu et al. (2024) as the
ones of this paper. From Figs. 4(a) and 4(b), it can be
seen that Algorithm 1 converges faster than those in Li et
al. (2018); Huang et al. (2019); Gratton et al. (2021); Xu
et al. (2022); Wang & Başar (2023a); Liu et al. (2024).
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Fig. 4. Comparison of the convergence rate in Algorithm 1
with the ones in (Li et al., 2018; Huang et al., 2019; Gratton
et al., 2021; Xu et al., 2022; Wang & Başar, 2023a; Liu et
al., 2024)

5 Conclusion

In this paper, we have proposed a differentially pri-
vate distributed nonconvex stochastic optimization
algorithm with event-triggered communication. Two
masked cases are considered to achieve the differential
privacy, one is the additive Gaussian noise, and another
is the unbiased stochastic quantizer. For both cases,
differential privacy analysis is given rigorously. By us-
ing the sample-size parameter-controlled subsampling
method, the differential privacy level of the algorithm
is enhanced compared with the existing ones. Then, by
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using the two-time-scale step-sizes method, the conver-
gence rate and the oracle complexity of the algorithm are
given under the Polyak- Lojasiewicz condition. Further,
we show how the event-triggered mechanism affects the
convergence rate. Finally, a numerical example of the
distributed training of CNN on the “MNIST” dataset
is given to verify the effectiveness of the algorithm.

Appendix A. Proof of Theorem 3

For the convenience of the analysis, let

x̄k ,
1

n
(1>n ⊗ Ir)xk, w̄k ,

1

n
(1>n ⊗ Ir)wk,

Yk , (W ⊗ Ir)xk,W , In −
1

n
1n1>n ,

∇f(x̄k) , [∇f1(x̄k)>,∇f2(x̄k)>, . . . ,∇fn(x̄k)>]>,

∇f(xk) ,
1

n
(1>n ⊗ Ir)∇f(xk) =

1

n

n∑
i=1

∇fi(xi,k).

The following three steps are given to prove Theorem 3.

Step 1: We first consider the term ‖Yk‖2. Note that
W (In − βL) = (In − βL)W . Then, multiplying both
sides of (11) by W ⊗ Ir gives

Yk+1 = ((In−βL)⊗ Ir)Yk−α(W⊗Ir)∇f(xk)

+ β(WA⊗Ir)(dk−ek)−α(W⊗Ir)wk. (A.1)

Since dk is independent of Fk, E[di,k|Fk] = 0 and
E[‖di,k‖2|Fk] ≤ σ2, we then have

E[dk|Fk] = 0, (A.2)

E[‖dk‖2 |Fk] = nrσ2. (A.3)

Since wk = ∇`k−∇f(xk), by Assumption 2(iii) we have

E(wk|Fk) = Ewk = 0, (A.4)

E(‖wk‖2|Fk) = E‖wk‖2 ≤
nσ2

`

s
. (A.5)

By the event-trigger mechanism (4), we have

‖ek‖ ≤
√
nΦ. (A.6)

By (A.4), taking conditional mathematical expectation

of ‖Yk+1‖2 with respect to Fk, it is obtained that

E(‖Yk+1‖2|Fk)

=E(‖ ((In − βL)⊗ Ir)Yk − α(W ⊗ Ir)∇f(xk)

+β(WA⊗ Ir)(dk − ek)− α(W ⊗ Ir)wk‖2|Fk)

=E(‖ ((In − βL)⊗ Ir)Yk − α(W ⊗ Ir)∇f(xk)

+β(WA⊗ Ir)(dk − ek)‖2|Fk)+α2E(‖(W⊗Ir)wk‖2|Fk)

− 2E(〈((In−βL)⊗ Ir)Yk − α(W⊗Ir)∇f(xk)

+β(WA⊗ Ir)(dk−ek), α(W ⊗ Ir)wk〉|Fk)

=E(‖((In−βL)⊗Ir)Yk − α(W⊗Ir)∇f(xk)

+β(WA⊗Ir)(dk−ek)‖2|Fk)+α2E ‖(W⊗Ir)wk‖2.(A.7)

By the law of total expectation, taking mathematical
expectation on both sides of (A.7) we have

E‖Yk+1‖2

=E‖((In−βL)⊗Ir)Yk−α(W⊗Ir)∇f(xk)

+ β(WA⊗Ir)(dk−ek)‖2+α2E‖(W⊗Ir)wk‖2

=E‖((In−βL)⊗Ir)Yk−α(W⊗Ir)∇f(xk)− β(WA⊗Ir)ek‖2

+ β2E‖(WA⊗Ir)dk‖2 + 2E〈((In−βL)⊗Ir)Yk
− α(W⊗Ir)∇f(xk), β(WA⊗Ir)dk〉 − 2E〈β(WA⊗Ir)ek,
β(WA⊗Ir)dk〉+α2E‖(W⊗Ir)wk‖2. (A.8)

Since xk is Fk-measurable, ((In−βL)⊗Ir)Yk−α(W ⊗
Ir)∇f(xk) is Fk-measurable. By (A.2), we have

2E〈((In−βL)⊗Ir)Yk−α(W⊗Ir)∇f(xk), β(WA⊗Ir)dk〉
=2E(E(〈((In−βL)⊗Ir)Yk−α(W⊗Ir)∇f(xk),

β(WA⊗Ir)dk〉|Fk))

=2E(〈((In−βL)⊗Ir)Yk−α(W⊗Ir)∇f(xk),

E(β(WA⊗Ir)dk|Fk)〉)
=0. (A.9)

Note that for any m ≥ 1 and a1,a2, . . . ,am ∈ Rr, the
following inequality holds:

‖a1 + a2 + · · ·+ am‖2

≤m(‖a1‖2 + ‖a2‖2 + · · ·+ ‖am‖2). (A.10)

Then, by letting m = 2 in (A.10), we have

− 2E〈β(WA⊗Ir)ek, β(WA⊗Ir)dk〉
≤2β2E‖(WA⊗Ir)ek‖‖(WA⊗Ir)dk‖
≤β2E‖(WA⊗Ir)ek‖2 + β2E‖(WA⊗Ir)dk‖2.(A.11)

Substituting (A.9) and (A.11) into (A.8) implies

E‖Yk+1‖2

≤E‖((In−βL)⊗Ir)Yk−α(W⊗Ir)∇f(xk)

− β(WA⊗Ir)ek‖2 + 2β2E‖(WA⊗Ir)dk‖2

+ β2E‖(WA⊗Ir)ek‖2 +α2E‖(W⊗Ir)wk‖2. (A.12)
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Note that the following Cauchy-Schwarz inequality
(Zorich, 2015) holds: ‖a + b‖2 ≤ (1 + ρLβ)‖a‖2 +
(1 + 1

ρLβ
)‖b‖2, ∀a,b ∈ Rr, where ρL > 0 is the sec-

ond smallest eigenvalue of L. Then, this together with
(A.12) gives

E‖Yk+1‖2

≤ (1 + ρLβ)E ‖((In − βL)⊗ Ir)Yk‖2

+

(
1 +

1

ρLβ

)
E‖−α(W⊗Ir)∇f(xk)−β(WA⊗Ir)ek‖2

+ 2β2E‖(WA⊗Ir)dk‖2 + β2E‖(WA⊗Ir)ek‖2

+ α2E ‖(W ⊗ Ir)wk‖2 . (A.13)

By letting m = 2 in (A.10), E‖ − α(W ⊗ Ir)∇f(xk) −
β(WA⊗ Ir)ek‖2 in (A.13) can be rewritten as

E‖ − α(W ⊗ Ir)∇f(xk)− β(WA⊗ Ir)ek‖2

≤2α2E‖(W ⊗ Ir)∇f(xk)‖2

+ 2β2E‖(WA⊗ Ir)ek‖2. (A.14)

Substituting (A.14) into (A.13) implies

E ‖Yk+1‖2

≤ (1 + ρLβ)E ‖((In − βL)⊗ Ir)Yk‖2

+
2(1+ρLβ)

ρLβ
(α2E‖(W ⊗ Ir)∇f(xk)‖2

+β2E‖(WA⊗ Ir)ek‖2)

+ 2β2E‖(WA⊗Ir)dk‖2 + β2E‖(WA⊗Ir)ek‖2

+ α2E ‖(W ⊗ Ir)wk‖2 . (A.15)

Note that ‖Ax‖ ≤ ‖A‖‖x‖, ∀A ∈ Rn×n, x ∈ Rn. Then,
by ‖A‖ = ‖W‖ = 1, substituting (A.3), (A.5) and (A.6)
into (A.15) implies

E ‖Yk+1‖2

≤ (1+ρLβ)E ‖((In−βL)⊗ Ir)Yk‖2

+
2(1+ρLβ)α2

ρLβ
E‖∇f(xk)‖2

+
n(2+3ρLβ)βΦ2

ρL
+2nrβ2σ2 +

nα2σ2
`

s
. (A.16)

Then, by Courant-Fischer’s Theorem (Horn & Johnson,
2012) we have

‖((In− βL)⊗ Ir)Yk‖2 ≤ (1− ρLβ)2‖Yk‖2. (A.17)

Thus, substituting (A.17) into (A.16), one can get

E‖Yk+1‖2

≤(1 + ρLβ)(1− ρLβ)2E‖Yk‖2 +
2(1 + ρLβ)α2

ρLβ
E‖∇f(xk)‖2

+
n(2 + 3ρLβ)βΦ2

ρL
+ 2nrβ2σ2 +

nα2σ2
`

s

≤(1−ρLβ)E‖Yk‖2

+
2(1 + ρLβ)α2

ρLβ
E‖∇f(xk)−∇f(x̄k) +∇f(x̄k)‖2

+
n(2 + 3ρLβ)βΦ2

ρL
+ 2nrβ2σ2 +

nα2σ2
`

s
. (A.18)

Letting m = 2 in (A.10), ‖∇f(xk)−∇f(x̄k)+∇f(x̄k)‖2
in (A.18) can be rewritten as

‖∇f(xk)−∇f(x̄k)+∇f(x̄k)‖2

≤2‖∇f(xk)−∇f(x̄k)‖2+2‖∇f(x̄k)‖2

=2

n∑
i=1

‖∇fi(xi,k)−∇fi(x̄k)‖2+2

n∑
i=1

‖∇fi(x̄k)‖2. (A.19)

By Assumption 2(i) we have ‖∇fi(xi,k) − ∇fi(x̄k)‖ ≤
L‖xi,k − x̄k‖. Then,

∑n
i=1 ‖∇fi(xi,k)−∇fi(x̄k)‖2 can

be rewritten as

n∑
i=1

‖∇fi(xi,k)−∇fi(x̄k)‖2

≤L2
n∑
i=1

‖xi,k − x̄k‖2 = L2‖Yk‖2. (A.20)

By Assumption 2(ii) and Lemma A.1(ii) in Chen et al.
(2024), ‖∇fi(x̄k)‖2 ≤ 2L(fi(x̄k)− f∗i ), we have

n∑
i=1

‖∇fi(x̄k)‖2 ≤ 2L
n∑
i=1

(fi(x̄k)− f∗i ). (A.21)

Thus, substituting (A.20) and (A.21) into (A.19) gives

‖∇f(xk)−∇f(x̄k) +∇f(x̄k)‖2

≤2L2‖Yk‖2 + 4L

(
n∑
i=1

(fi(x̄k)− f∗i )

)
. (A.22)

Let M∗ = F ∗− 1
n

∑n
i=1 f

∗
i . Then, (A.22) can be rewrit-

ten as

‖∇f(xk)−∇f(x̄k) +∇f(x̄k)‖2

≤2L2‖Yk‖2 + 4L

(
n∑
i=1

(fi(x̄k)− f∗i )

)
=2L2‖Yk‖2 + 4nL(F (x̄k)− F ∗) + 4nLM∗.

11



This together with (A.18) implies

E‖Yk+1‖2 ≤
(

1− ρLβ +
4(1 + ρLβ)α2L2

ρLβ

)
E‖Yk‖2

+
8n(1 + ρLβ)α2L

ρLβ
E(F (x̄k)− F ∗)

+
n(2 + 3ρLβ)βΦ2

ρL
+ 2nrβ2σ2 +

nα2σ2
`

s

+
8n(1 + ρLβ)α2LM∗

ρLβ
. (A.23)

Step 2: We next focus on the term F (x̄k)− F ∗. Multi-
plying both sides of (11) by 1

n (1>n ⊗ Ir) implies

x̄k+1 = x̄k−α∇f(xk)−αw̄k+
β

n
(1>n⊗Ir)(dk −ek). (A.24)

Then by (A.24) and Lemma 3.4 in Bubeck (2015), we
can derive that

F (x̄k+1)− F ∗

≤ (F (x̄k)− F ∗) +
L

2
‖x̄k+1 − x̄k‖2 + 〈∇F (x̄k), x̄k+1 − x̄k〉

= (F (x̄k)− F ∗) +
L

2
‖α∇f(xk)

− β

n

(
1>n ⊗ Ir

)
(dk − ek) + αw̄k‖2

− 〈∇F (x̄k),−β
n

(
1>n ⊗ Ir

)
(dk − ek)

+ α∇f(xk) + αw̄k〉. (A.25)

Sincewk is independent ofFk, by (A.2) and (A.4), taking
conditional expectation of (A.25) with respect to Fk
gives

E(F (x̄k+1)− F ∗|Fk)

≤E(F (x̄k)− F ∗|Fk)− αE(〈∇F (x̄k),∇f(xk)〉|Fk)

+
L

2
E(‖α∇f(xk)− β

n
(1>n ⊗Ir)(dk−ek)+αw̄k‖2|Fk)

+
β

n
E(〈∇F (x̄k),

(
1>n ⊗ Ir

)
(dk − ek)〉|Fk)

=(F (x̄k)− F ∗)− α〈∇F (x̄k),∇f(xk)〉

+
L

2
E(‖α∇f(xk)− β

n
(1>n ⊗Ir)(dk−ek)‖2|Fk)

+
α2L

2
E‖w̄k‖2 −

β

n
〈∇F (x̄k), (1>n ⊗ Ir)ek〉. (A.26)

Letting m = 3 in (A.10), L
2E(‖α∇f(xk) − β

n (1>n ⊗

Ir)(dk − ek)‖2|Fk) in (A.26) can be rewritten as

L

2
E(‖α∇f(xk)− β

n

(
1>n ⊗ Ir

)
(dk − ek) ‖2|Fk)

≤3β2L

2n2
(
E(‖(1>n ⊗ Ir)ek‖2|Fk) + E(‖(1>n ⊗ Ir)dk‖2|Fk)

)
+

3α2L

2
E(‖∇f(xk)‖2|Fk).

(A.27)

Note that ‖(1>n ⊗ Ir)ek‖2 = n‖
∑n
i=1 ei,k‖2 ≤ n2‖ek‖2

and ‖w̄k‖2 = ‖ 1n
∑n
i=1 wi,k‖2 ≤

1
n‖wk‖

2. Then, by
(A.3), (A.5), (A.6) and the law of total expectation,
Substituting (A.27) into (A.26) and taking mathemati-
cal expectation on both sides implies

E (F (x̄k+1)−F ∗)
≤E(F (x̄k)−F ∗)−αE〈∇F (x̄k),∇f(xk)〉

+
3nβ2L

2

(
Φ2 + rσ2

)
− β

n
E
〈
∇F (x̄k),

(
1>n ⊗ Ir

)
ek
〉

+
3α2L

2
E‖∇f(xk)‖2 +

α2σ2
`L

2s

≤E(F (x̄k)−F ∗)−αE〈∇F (x̄k),∇f(xk)〉

+
3nβ2L

2

(
Φ2 + rσ2

)
+

√
nβΦ

2
(E‖∇F (x̄k)‖2 + 1)

+
3α2L

2
E‖∇f(xk)‖2 +

α2σ2
`L

2s
. (A.28)

Note that 〈a,b〉 = 1
2‖a‖

2 + 1
2‖b‖

2 − 1
2‖a − b‖2, ∀a,

b ∈ Rr. Then, −α〈∇F (x̄k),∇f(xk)〉 in (A.28) can be
rewritten as

−α〈∇F (x̄k),∇f(xk)〉

=−α
2
‖∇F (x̄k)‖2−α

2
‖∇f(xk)‖2+α

2
‖∇F (x̄k)−∇f(xk)‖2

≤−α
2
‖∇F (x̄k)‖2+α

2
‖∇F (x̄k)−∇f(xk)‖2. (A.29)

Let m = n in (A.10). Then, ‖∇F (x̄k) − ∇f(xk)‖2 in
(A.29) can be rewritten as

‖∇F (x̄k)−∇f(xk)‖2 =‖ 1

n

n∑
i=1

(∇fi(x̄k)−∇fi(xi,k))‖2

≤ 1

n

n∑
i=1

‖∇fi(x̄k)−∇fi(xi,k)‖2. (A.30)

Thus, substituting (A.20) into (A.30) leads to

∥∥∥∇F (x̄k)−∇f(xk)
∥∥∥2 ≤ L2

n
‖Yk‖2. (A.31)
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Substituting (A.29) and (A.31) into (A.28) implies

E(F (x̄k+1)− F ∗)

≤E(F (x̄k)− F ∗)− α

2
E‖∇F (x̄k)‖2 +

αL2

2n
E‖Yk‖2

+

√
nβΦ

2
E‖∇F (x̄k)‖2 +

α2σ2
`L

2s

+
3nβ2L

2

(
Φ2 + rσ2

)
+

√
nβΦ

2

+
3α2L

2
E
∥∥∥∇f(xk)−∇F (x̄k) +∇F (x̄k)

∥∥∥2 .(A.32)

Furthermore, by letting m = 2 in (A.10) and using

(A.31), ‖∇f(xk) − ∇F (x̄k) + ∇F (x̄k)‖2 in (A.32) can
be rewritten as

∥∥∥∇f(xk)−∇F (x̄k) +∇F (x̄k)
∥∥∥2

≤2
∥∥∥∇f(xk)−∇F (x̄k)

∥∥∥2 + 2 ‖∇F (x̄k)‖2

≤2L2

n
‖Yk‖2 + 2 ‖∇F (x̄k)‖2 . (A.33)

Letting m = n in (A.10) and using Lemma A.1(ii) in
Chen et al. (2024), ‖∇F (x̄k)‖2 in (A.33) can be rewritten
as

‖∇F (x̄k)‖2 ≤ 2L (F (x̄k)−F ∗) . (A.34)

Thus, substituting (A.33) and (A.34) into (A.32) implies

E (F (x̄k+1)− F ∗)
≤
(
1 + 6α2L2 +

√
nLβΦ

)
E(F (x̄k)− F ∗)

−α
2
E‖∇F (x̄k)‖2+

αL2(1+6αL)

2n
E‖Yk‖2

+
α2σ2

`L

2s
+

3nβ2L

2
(Φ2+rσ2)+

√
nβΦ

2
. (A.35)

If Assumption 4 holds, then (A.35) can be rewritten as

E (F (x̄k+1)− F ∗)
≤
(
1−µα+6α2L2+

√
nLβΦ

)
E(F (x̄k)− F ∗)

+
αL2(1 + 6αL)

2n
E‖Yk‖2 +

α2σ2
`L

2s

+
3nβ2L

2
(Φ2 + rσ2) +

√
nβΦ

2
. (A.36)

Step 3: We get the main result of the theorem based on
Steps 1 and 2.

Let

θ1 = max{1−µα+6α2L2+
√
nLβΦ +

8n(1 + ρLβ)α2L

ρLβ
,

1− ρLβ +
αL2(1 + 6αL)

2n
+

4(1 + ρLβ)α2L2

ρLβ
},

(A.37)

θ2 =
(2n+ L)α2σ2

`

2s
+

3nβ2L

2
(Φ2 + rσ2)

+
n(2 + 3ρLβ)βΦ2

ρL
+ 2nrβ2σ2 +

√
nβΦ

2

+
8n(1 + ρLβ)α2LM∗

ρLβ
. (A.38)

Then, by (A.37) and (A.38), summing (A.23) and
(A.36) implies

E(‖Yk+1‖2 + F (x̄k+1)− F ∗)
≤θ1E(‖Yk‖2 + F (x̄k)− F ∗) + θ2. (A.39)

By iteratively computing (A.39), for any k = 0, . . . ,K,
the following inequality holds:

E(‖Yk+1‖2+F (x̄k+1)−F ∗)

≤θk+1
1 E(‖Y0‖2+F (x̄0)−F ∗)+θ2

k∑
m=0

θk−m1 . (A.40)

When K is sufficiently large, we have 0 < θ1 < 1. Since
ln(1 − x) ≤ −x, ∀x < 1, we can obtain that θK+1

1 =
exp((K + 1) ln(1− (1− θ1))) ≤ exp(−(K + 1)(1− θ1)).
Substituting (A.37) into the inequality above implies

θK+1
1 ≤max{exp((K + 1)(−µα+ 6α2L2 +

√
nLβΦ

+
8n(1 + ρLβ)α2L

ρLβ
)),

exp((K + 1)(−ρLβ +
αL2(1 + 6αL)

2n

+
4(1 + ρLβ)α2L2

ρLβ
))}. (A.41)

Note that p1 > p2 and p2 + p5 > p1 in Assumption 3.

Then, we have−µα+6α2L2+
√
nLβΦ+ 8n(1+ρLβ)α

2L
ρLβ

=

O(−µα2 ), −ρLβ + αL2(1+6αL)
2n + 4(1+ρLβ)α

2L2

ρLβ
=

O(−ρLβ2 ). Thus, (A.41) can be rewritten as

θK+1
1

=O(max{exp(− (K+1)µα

2
),exp(− (K+1)ρLβ

2
)})

=O(max{exp(−µa1
2
K1−p1),exp(−ρLa2

2
K1−p2)}).(A.42)
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Moreover, by 2p2 − 2p4 > p1, θ2
∑K
m=0 θ

K−m
1 in (A.40)

can be rewritten as

θ2

K∑
m=0

θK−m1 =
θ2(1−θK+1

1 )

1−θ1
= O

(
θ2

1−θ1

)
=O

(
1

Kmin{p1−p2,p2+p5−p1,2p2−2p4−p1}

)
. (A.43)

For any node i ∈ V, by Lemma 3.4 in Bubeck (2015), we
have

F (xi,K+1)−F (x̄K+1) ≤〈∇F (x̄K+1), xi,K+1−x̄K+1〉

+
L

2
‖x̄K+1−xi,K+1‖2. (A.44)

Note that 〈a,b〉 ≤ ‖a‖‖b‖ ≤ ‖a‖2+‖b‖2
2 , ∀a,b ∈ Rr.

Then, (A.44) can be rewritten as

F (xi,K+1)−F (x̄K+1)

≤‖∇F (x̄K+1)‖2 + ‖x̄K+1−xi,K+1‖2

2

+
L

2
‖x̄K+1−xi,K+1‖2

=
L+1

2
‖x̄K+1−xi,K+1‖2 +

‖∇F (x̄K+1)‖2

2
.(A.45)

By Lemma A.1(ii) in Chen et al. (2024) we have
‖∇F (x̄K+1)‖2 ≤ 2L(F (x̄K+1) − F ∗). This together
with (A.45) gives F (xi,K+1)−F (x̄K+1) ≤ L+1

2 ‖x̄K+1−
xi,K+1‖2 + L(F (x̄K+1)− F ∗). Thus, we have

F (xi,K+1)− F (x̄K+1)

≤L+ 1

2

n∑
i=1

‖x̄K+1 − xi,K+1‖2 + L(F (x̄K+1)− F ∗)

=
L+ 1

2
‖YK+1‖2 + L(F (x̄K+1)− F ∗). (A.46)

Furthermore, for any node i ∈ V, by (A.46), we have

F (xi,K+1)− F ∗

= (F (xi,K+1)− F (x̄K+1)) + (F (x̄K+1)− F ∗)

≤L+ 1

2
‖YK+1‖2 + (L+ 1)(F (x̄K+1)− F ∗)

≤(L+ 1)
(
‖YK+1‖2 + (F (x̄K+1)− F ∗)

)
. (A.47)

Hence, by substituting (A.42), (A.43) and (A.47) into
(A.40), we have

E(F (xi,K+1)− F ∗)

=O

(
1

Kmin{p1−p2,p2+p5−p1,2p2−2p4−p1}

)
. (A.48)

Note that by Lemma A.1(ii) in Chen et al. (2024), we
have

‖∇F (xi,K+1)‖2 ≤ 2L(F (xi,K+1)− F ∗). (A.49)

Then, taking the mathematical expectation on (A.49)
and substituting (A.48) into (A.49) imply

E‖∇F (xi,K+1)‖2

=O

(
1

Kmin{p1−p2,p2+p5−p1,2p2−2p4−p1}

)
. (A.50)

Note that for any ψ ∈ [1, 2], the function x
ψ
2 is

concave for x ≥ 0. Then, by Jensen’s inequality
(Chow & Teicher, 2012) we have E‖∇F (xi,K+1)‖ψ=

E
(
‖∇F (xi,K+1)‖2

)ψ
2 ≤(E‖∇F (xi,K+1)‖2)

ψ
2 . Thus, sub-

stituting (A.50) into this inequality implies

E‖∇F (xi,K+1)‖ψ

=O

(
1

K
ψ
2 min{p1−p2,p2+p5−p1,2p2−2p4−p1}

)
,

the theorem is thereby proved. 2
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